

Michael Underwood

HONEYWELL GBAS PRESENTATION

9 April 2018

Ground Based Augmentation System (GBAS)

Honeywell's SmartPath® Ground-Based Augmentation System (GBAS)

© 2015 by Honeywell International Inc. All rights reserved.

Leading the Industry in Satellite Landings Systems for > 20 Years

Honeywell SmartPath GBAS

4 GP5 Receivers

Next Generation Landing System- Available Now

- Today's presentation focuses on the next generation of landing system (GBAS) that provides:
 - Enhanced Safety:
 - Multiple ANSP Certification Pedigree
 - Signal Stability (immune to signal bends inherent in ILS)
 - Wake Vortex Mitigation Customizable Glide Paths/Approaches

- Increased Airport Capacity:

- Offers precision approach where ILS cannot due to geography
- Enables flexible approaches (48), improved accuracy versus ILS
- Airport benefits from increased revenue (landings fees, concessions, etc.) and cost avoidance (capacity increase without adding runways

- Lower Life-cycle Costs:

- One SmartPath GBAS Station serves all runways/runway ends at any airport
- Lower maintenance costs/lower flight inspection costs

- Environmental Friendliness:

- Variable Glide Slopes, RNAV/RNP to GLS Finals
- Airline fuel & emission savings, increased schedule flexibility, avoid noise violations
- Airports increased capacity and schedule flexibility, improved community relations

Key GBAS Benefits Over Legacy ILS

Flexible, Digital Approach Paths

Enables Efficient Flight Path

Requires No "Clear Zones"

Serves All Runway Ends

Increasing Runway Capacity, Reducing Noise, Reducing Track Miles, Reducing Operating Costs Flexibility to Address Multitude of Operational Challenges at the Airports You Fly To

^{© 2015} by Honeywell International Inc. All rights reserved.

Stakeholder Involvement Throughout the Whole Project =

Successful Implementation

SmartPath® GBAS Deployment Expanding Globally

Numerous Near-Term Opportunities for Network Expansion

Honeywell

SLS-4000 Block II SW – What Improves?

- Honeywell Achieved System Design Approval for our 3rd Generation Block II GBAS Software in October 2015
 FAA System Design Approval
 - Enhances Availability
 - Include satellites that are currently omitted in Block I
 - Change fault reactions to re-admit faulty satellites sooner
 - Operate on two receivers for common masking
 - Block I requires three receivers to broadcast corrections
 - Provides Configurability Options
 - Allows for a user-defined iono threat model
 - Enables improved availability in all geographies
 - Allows for automatic user-defined GLS approach procedures for a specific time period
 - Motivated by low latitudes Set up to broadcast only during specific time periods
 - Maintenance Improvements
 - Enable or disable VHF broadcast without going into test mode
 - Display enhancements for usability
 - Enables 48 FAS Data Blocks (from 26)

© 2015 by Honeywell International Inc. All rights reserved.

Extending Honeywell's Global Leadership in Satellite Navigation

Block II-S – SBAS Integration Supports CAT II on CAT I

- SBAS Integration option included in Block II System Design Approval
- Performance Enhancement of Ground System Supports:
 - CAT II on CAT I with no change to existing GAST C avionics
 - CAT I Autoland
 - 100% Availability
 - Extend Service Volumes
 - Turn on Differentially Corrected Positioning System

© 2015 by Honeywell International Inc. All rights reserved.

Concept Valid for all ICAO Compliant SBAS Systems

SLS-5000 CAT III SmartPath® GBAS

Road to CAT III is Paved...

- SDA Approval Plan submitted and acknowledged by FAA
- FAA CAT III validation project completed
 - Substantially de-risked CAT III development
- FAA formally supporting CAT III development
- Heavy Re-use of Block II baseline
 - 100% re-use of 13 integrity monitors from Block II
 - Adding 2 new monitors; Updating 2 others
- Minimal HW changes from CAT I (ex: Copper Cables to Fiber)
- SDA ... Market Driven Delivery

CAT III Schedule

Start St 6/1/2015 12/1/ July October J J-Jun-15	DR P 2016 7/1/1 January April J	Boxcar 1 12/1/2016 2/21 Confe 2/1	Boxear 2 7/1/2017 Boxear 3 11/2018 COR 1/2017 ary April July October January	TRR 4/1/2018 12/1 April July October	nd Approval 2018 7/1/2019 January April 1-Jul-19
Approval Plan System Requirements Trace to SARPs FHA Planning Documents PSAA PHAC FAA SOI 1	System Design Description Sub-System Requirements Security Plans Human Factors Algorithm Description Documents Vreliminary System Safety Assessment	High Level HW Requirements High Level SW Requirements Design Analysis and Validation Human Factors Design Security Design Gualification Planning Draft HMI Document Boxcar 1	Low Level Software Requirements Software Design Test Cases and Procedures Usalification Procedures Hardware/Software Integration Conformed Test Articles Complete Requirements Coverage Tool Qualification Motor and ATSU Software Design and Implementation Hardware Qual Starts Boxcar 2 Boxcar 3 FAA SOI 3	Formal Test Results Structural Coverage Analysis System Safety Assessment Final HM Report Commercial Instruction Book Production Release FAA SOI4 FAA Safety Audit	 FAA Internal Review Time Safely Risk Management Occument (SRMD) System Design Approval (SDA)

SCAT I	GAST-C	GAST-D		
SCAT I Operations (1998)	CAT I Operations	CAT I Operations	CAT II/III Operations	
Broadcast Msg Type 1, 2 & 4	Broadcast Msg Type 1, 2 & 4	Broadcast Msg Type 1, 2 & 4	Broadcast Message Type 11	
	Sigma PR Ground	Sigma PR Ground		
	Phase Center Non-Zero Mean	Phase Center Non-Zero Mean		
	Ground System Sigma Monitor	Ground System Sigma Monitor		
	Ionosphere Anomaly Monitor	Ionosphere Anomaly Monitor		
	Troposphere Anomaly Monitor	Troposphere Anomaly Monitor		
	Ephemeris Monitor	Ephemeris Monitor		
	Signal Deformation Monitor	Signal Deformation Monitor		
	Low Satellite Signal Power Monitor	Low Satellite Signal Power Monitor		
	Code Carrier Divergence Monitor	Code Carrier Divergence Monitor		
	Excessive Acceleration Monitor	Excessive Acceleration Monitor	Excessive Acceleration Monitor	
	Executive Monitor	Executive Monitor	Executive Monitor	
	RFI Above the Mask	RFI Above the Mask		
	Iono Screening Real Time Inflation	Iono Screening Real Time Inflation		
	Constellation Alerts	Constellation Alerts		
	Broadband RFI Monitor	Broadband RFI Monitor		
			Cross Correlation Monitor	
			Iono Gradient Monitor	

CAT I and CAT III Integrity Monitors

© 2015 by Honeywell International Inc. All rights reserved

Clear Path to CAT III Based on Certified Block II Baseline

Demonstrating the Value of GBAS

© 2015 by Honeywell International Inc. All rights reserved

Reducing Risk of Implementing Advanced GBAS Operations

Customer Testimonial – DFS, Germany

CUSTOMER SUCCESS STORY

Honeywell

DFS embraces new precision approach technology

Honeywell SmartPath® GBAS increases airspace efficiency and capacity with the prospect to lower airport costs

Overview

With global air travel continuing to rise, airports need to find new ways to handle additional aircraft movements without incurring the costs of building more runways. GBAS has been identified by ICAO, the U.S. Federal Aviation Administration (FAA), and Eurocontrol as an enabler for improving air traffic and Honeywell's solution, the SmartPath Precision Landing System, is the world's only certified system. Bremen Airport in Germany was the first airport in the world to adopt the technology.

AT A GLANCE

Customer

Names: DFS Deutsche Flugsicherung GmbH Location: Bremen, Germany

Industry: Air navigation service provider

Website: www.dfs.de

Honeywell solution SmartPath Ground-Based Augmentation System (GBAS)

Why DFS chose Honeywell

- GBAS identified by ICAO, FAA and Eurocontrol as an enabler for improving air traffic capacity
- Honeywell SmartPath is world's first and only certified GBAS system
- DFS wanted to familiarise itself with GBAS as the organisation sees it as an eventual successor to ILS technology

Customer results

- Reduced the chances of taxi time delay and much less impact from weather or significant sitting obstacles on the airfield, unlike ILS oritical areas
- Significantly reduced maintenance effort as GBAS requires fewer checks by flight inspection than ILS systems
- Used by airlines under IMC down to CAT I decision altitudes

Honeywell